Operating Systems (Fall/Winter 2018)

Synchronization Tools

Yajin Zhou (http://yajin.orqg)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Sackground

Processes can execute concurrently

May e interrupted at any time, partially completing
execution

Concurrent access to shared data may result in data
Inconsistency

data consistency requires orderly execution of
cooperating processes

O 00 N O G ik W N -

= o s e W W W W W W W W W WRNN NN DNDNDNDNDNDNR R e e e s
G &= W N P © O 00 N O G & WIN P O W W N O UG bk WNhNRFR O VW OWwWNOO G k= WbNh R~ O

#include <stdio.h>
#include <pthread.h>
#tinclude "mythreads.h"

static volatile int counter = 0;

e 4

// mythread/()

44

// Simply adds 1 to counter repeatedly, in a loop
// No, this is not how you would add 10,000,000 to
// a counter, but it shows the problem nicely.

L

void =

mythread (void =xarqg)

{

PrinEf (s Deginn®; (Ehat +) A¥g);

a1 o i e
for (i = 0; i < 1le7; i++) {
counter = counter + 1;

}
printf ("%s: done\n", (char x) arqg);
return NULL;

}

i
L Hain)
e
// Just launches two threads (pthread_create)
// and then waits for them (pthread_join)
e
int
main(int argc, char xargv([])
{
pthread_t pl, p2;

printf ("main: begin (counter = %d)\n", counter);

Pthread create(&pl, NULL, mythread, "A");
Pthread create(&p2, NULL, mythread, "B");

// Jjoin waits for the threads to finish
Pthread_ join(pl, NULL);

Pthread doipn(p2,. NULL);

printf ("main: done with both (counter = %d)\n",
return O;

counter) ;

HW

—Xample

prompt> ./main

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 19345221)

e e Why?

prompt> ./main

main: begin (counter = 0)
A: begin

B: begin

A: done

B: done

main: done with both (counter = 19221041)

Uncontrolled Scheduling

0x8049%alc, %
. Counter = counter + 1 ke L

mov %eax, 0x8049%alc

(after instruction)

OS Thread 1 Thread 2 PC Y%eax counter
before critical section 100 O 50
mov 0x8049alc, %eax 105 50 50
add $0x1, Y%eax 108 51 50
interrupt
save T1's state
restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049alc 115 51 51
interrupt
save T2's state
restore T1's state 108 51 5

mov %eax, 0x8049alc 115 51 51

counter: 51 instead of 52!

Race Condition

Several processes (or threads) access and manipulate the same data
concurrently and the outcome of the execution depends on the
particular order in which the access takes place, is called a race-
condition

Race Condition in Kernel

Processes PO and P1 are creating child processes using the fork() system
call

Race condition on kernel variable next_available pid which represents

the next available process identifier (pid)

7 i

pid_t child = fork (); pid_t child = fork ();

request request
pid pid

next_available_pid = 2615

return return
2615 2615

child = 2615 child = 2615

time

\J

Unless there is mutual exclusion, the same pid could be assigned to two
different processes!

Critical Section

- Consider system of n processes {po, P1, ... Pn-1}
Each process has a critical section segment of code
- e.g., to change common variables, update table, write file, etc.
-+ Only one process can be in the critical section

+ when one process in critical section, no other may be in its critical
section

* each process must ask permission to enter critical section in entry
section

- the permission should be released in exit section

Remainder section

Critical Section

General structure of process pi is

do {

entry section

critical section

exit section

remainder section

} while (true);

Critical-Section Handling in OS

Single-core system: preventing interrupts

Multiple-processor: preventing interrupts are not feasible

Two approaches depending on if kernel is preemptive or non-
preemptive

Preemptive — allows preemption of process when running in
kernel mode

Non-preemptive — runs until exits kernel mode, blocks, or
voluntarily yields CPU

Essentially free of race conditions in kernel mode

Solution to Critical-Section: Three Requirements«:

Mutual Exclusion

- only one process can execute in the critical section

Progress

- If NO process is executing In its critical section and some processes wish to
enter their critical section, then only those processes that are not executing
In their retainer sections can participate in deciding which will enter its
critical section next, and this selection cannot be postponed indefinitely

Bounded waiting

- There exists a bound, or limit, on the number of times that other processes
are allowed to enter their critical sections after a process has made a
request to enter its critical section and before that request is granted

- It prevents starvation

Progress

The purpose of this condition Is to make sure that either some
process is currently in the CS and doing some work or, if there was
at least one process that wants to enter the CS, it will and then do
some work. In both cases, some work is getting done and therefore
all processes are making progress overall.

1 Ifno process is executing in its critical section

If there is a process executing in its critical section (even though not stated explicitly, this includes
the leave section as well), then this means that some work is getting done. So we are making
progress. Otherwise, if this was not the case...

2 - and some processes wish to enter their critical sections

If no process wants to enter their critical sections, then there is no more work to do. Otherwise, if
there is at least one process that wishes to enter its critical section...

2rogress

- 3.

4,

0.

then only those processes that are not executing in their remainder section

This means we are talking about those processes that are executing in either of the first two
sections (remember, no process is executing in its critical section or the leave section)...

can participate in deciding which will enter its critical section next,

Since there is at least one process that wishes to enter its CS, somehow we must choose one of
them to enter its CS. But who's going to make this decision? Those process who already requested
permission to enter their critical sections have the right to participate in making this decision. In
addition, those processes that may wish to enter their CSs but have not yet requested the
permission to do so (this means that they are in executing in the first section) also have the right to
participate in making this decision.

and this selection cannot be postponed indefinitely.

This states that it will take a limited amount of time to select a process to enter its CS. In particular,
no deadlock or livelock will occur. So after this limited amount of time, a process will enter its CS
and do some work, thereby making progress.

No process running outside the critical section should block the
other interested process from entering into it's critical section
when in fact the critical section is free.

Bounded waiting

- Bounded waiting: There exists a bound, or limit, on the number of
times other processes are allowed to enter their critical sections after
a process has made request to enter its critical section and before
that request Is granted.

after a process has made request to enter its critical section and before that request is granted.

In other words, if there is a process that has requested to enter its CS but has not yet entered it.
Let's call this process P.

There exists a bound, or limit, on the number of times other processes are allowed to enter their
critical sections

While P is waiting to enter its CS, other processes may be waiting as well and some process is
executing in its CS. When it leaves its CS, some other process has to be selected to enter the CS
which may or may not be P. Suppose a process other than P was selected. This situation might
happen again and again. That is, other processes are getting the chance to enter their CSs but
never P. Note that progress is being made, but by other processes, not by P. The problem is that P
is not getting the chance to do any work. To prevent starvation, there must be a guarantee that P will
eventually enter its CS. For this to happen, the number of times other processes enter their CSs
must be limited. In this case, P will definitely get the chance to enter its CS.

No process should have to wait forever to enter into critical section. there should be boundary on getting chances
to enter into critical section. If bounded waiting is not satisfied then there is a possibility of starvation.

Peterson’s Solution

Peterson’s solution solves two-processes synchronization
It assumes that LOAD and STORE are atomic
- atomic: execution cannot be interrupted
- The two processes share two variables
int turn: whose turn it is to enter the critical section

Boolean flag[2]: whether a process is ready to enter the critical section

Po:

do {

Peterson’s Solution

flag[@] = TRUE;

turn = 1;

while (flag[1l] && turn == 1);
critical section

flag[@] = FALSE;

remainder section

1 while (TRUE);

do {
flag[1l] = TRUE;

turn = 0;

while (flag[@] && (turn

critical section

flag[1l] = FALSE;

remainder section
} while (TRUE);

0)),;

Peterson’s Solution

1. Mutual exclusion is preserved
PO enters CS:
Either flag[1] = false or turn = 0
Case 1: flag[1]=false-> P1 is out CS
Case 2: flag[1]=false, turn = 1 -> Not possible

Case 3: flag[1]=true, turn=1 -> contradicts with the fact PO is in
CS

Case 4: flag[1]=true, turn = 0. -> P1 is waiting

Peterson’s Solution

- Progress requirement

+ Bounded waiting Loop

PO |flaglol=T > turn=1 //\ g os

P1 flag[1]=T |[—>| turn=0 \—/‘ CS .‘,ﬂag[ﬂ:FE

Loop

Whether PO enters CS depends on P1
Whether P1 enters CS depends on PO
not others

PO will enter CS after one limited entry P

Peterson’s Solution

Although useful for demonstrating an algorithm, Peterson’s Solution
IS not guaranteed to work on modern architectures.

Understanding why it will not work is also useful for better
understanding race conditions.

To Improve performance, processors and/or compilers may reorder
operations that have no dependencies.

For single-threaded this is ok as the result will always lbe the same.

For multithreaded the reordering may produce inconsistent or
unexpected results!

Peterson’s Solution

Two threads share the data:
boolean flag = false;
int x =0;
Thread 1 performs
while (!flag)
print x
Thread 2 performs
x = 100;
flag = true

What is the expected output?

Peterson’s Solution

100 Is the expected output.

However, the operations for Thread 2 may be reordered:

flag = true;
x = 100;

If this occurs, the output may be O!

The effects of instruction reordering in Peterson’s Solution

process) —>» | turn=1 »| flag[0] = true|—>| Cs ;

process, »| turn=0, flag[1] = true |—> cs _§=

time

Hardware Support for Synchronization

- Many systems provide hardware support for critical section code
- Uniprocessors: disable interrupts
- currently running code would execute without preemption
- generally too inefficient on multiprocessor systems
- need to disable all the interrupts
+ operating systems using this not scalable
- Solutions:
1. Memory barriers
- 2. Hardware instructions
- test-and-set: either test memory word and set value
- swap: swap contents of two memory words

- 3. Atomic variables

Memory Barriers

Memory model are the memory guarantees a computer
architecture makes to application programs.

Memory models may be either:

Strongly ordered — where a memory modification of one
processor Is immediately visible to all other processors.

Weakly ordered — where a memory modification of one
processor may not be immediately visible to all other processors.

A memory barrier is an instruction that forces any change in
memory to be propagated (made visible) to all other processors.

Memory Barriers

We could add a memory barrier to the following instructions to ensure Thread 1
outputs 100:

Thread 1 now performs

while (Iflag)
memory_barrier();

print x

Thread 2 now performs

x = 100;

memory_barrier();

flag = true

Hardware Instructions

Special hardware instructions that allow us to either test-and-modify
the content of a word, or two swap the contents of two words
atomically (uninterruptibly.)

Test-and-Set instruction

Compare-and-Swap instruction

Test-and-Set Instruction

Defined as below, but atomically

bool test_set (bool *target)
{

bool rv = *target;
*target = TRUE;

return

L ock with Test-and-Set

shared variable: bool lock = FALSE

do {
while (test_set(&lock)); // busy watit
critical section
lock = FALSE;
remainder section
} while (TRUE);

Mutual exclusion?

Orogress?

pounded-waiting? Why?

Bounded Waiting for Test-and-Set Lock

Suppose we have three threads
do {

while (test_set(&lock)); // busy wait
critical section
lock = FALSE;
remainder section
} while (TRUE);

10 CS CS

11 Waiting Waiting CS CS

_rfz Waiting Waiting Waiting Waiting Waiting

do {
waiting[i] = true;

while (waitingli] & test_and_set(&lock)) ;

waiting[i] = false;

/* critical section x/

j =(i+1) %n;
while ((j != i) && !'waitingl[j])
j=(j+1)96n;
if () = i)
lock = false;
else
waiting[j] = false;

/* remainder section x/
} while (true);

10 CS

Bounded Waiting for Test-and-Set Lock

LOCK=true, waiting[1]=false

11 Waiting CS

12 Waiting

waiting[1]=true waiting[2]=true

LOCK=true, waiting[2]=false

CS

L OCK=false

Compare-and-Swap Instruction

Definition:
int compare _and swap(int *value, int expected, int new value) ({

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;
}
1. Executed atomically
Returns the original value of passed parameter value

Set the variable value the value of the passed parameter new_value
but only if *value == expected is true. That is, the swap takes place

only under this condition.

Solution using Compare-and-sSwap

Shared integer lock initialized to O;
Solution:

while (true) {
while (compare and swap(&lock, 0, 1) !'= 0)
; /* do nothing */
/* critical section */

lock = 0;

/* remainder section */

Review

Data inconsistency: orderly execution
Race condition: outcome depends on the order
Critical section: change some data ...
Program structure: entry, critical section, exit section, remainder section
Mutual exclusion, progress, bounded waiting
Peterson’s solution: ME, progress, bounded waiting
Does not work on modern computer, why?
Hardware support:
test_and_set
compare_and_Swap

Bounded waiting”?

Compare-and-Swap in Practice: ‘cmpxchg’

An Instruction-instance

* In our recent disassembly of Linux’s kernel
function ‘rtc_cmos_read()’, this ‘cmpxchg’
instruction-instance was used:

lock cmpxchg sedx, cmos_lock

[L]

prefix opcode source-operand destination-operand

Note: Keep in mind that the accumulator %eax will affect what happens!
So we need to consider this instruction within it's surrounding context

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

cmpxchg

‘effects’ and ‘affects’

* According to Intel’s manual, the ‘cmpxchg’
Instruction also uses two ‘implicit’ operands
(i.e., operands not mentioned in the instruction)
— The CPU’s accumulator register
— The CPU’s EFLAGS register

* The accumulator-register (EAX) is both a
source-operand and a destination-operand

* The six status-bits in the EFLAGS register will
get modified, as a ‘side-effect’ this instruction

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

cmpxchg
‘cmpxchg’ description

* This instruction compares the accumulator
with the destination-operand (so the ZF-bit
iIn EFLAGS gets assigned accordingly)

* Then: cmos_lock: rvalue

— If (accumulator == destination) eax: expected_Value
{ZF < 1; destination < source; } edx: new véue

— If (accumulator != destination)

{ ZF € 0; accumulator < destination; }
and use eax

l?ck cm;:xchg %idx, cmos_lock dS temp return Value

/

/ o
/ \

prefix opcode source-operand destination-operand

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

First Version

The ‘busy-wait’ loop

Here is a ‘busy-wait’ loop, used to wait for the CMOS access to be ‘unlocked’

spin: mov cmos_lock, %eax # copy lock-variable to accumulator
test %eax, Y%eax # was CMOS access ‘unlocked’?
jnz spin # if it wasn'’t, then check it again

A CPU will fall through to here if ‘unlocked’ access was detected,
and that CPU will now attempt to set the ‘lock’ — in other words, it
will try to assign a non-zero value to the ‘cmos_lock’ variable.

But there’s a potential ‘race’ here — the ‘cmos lock’ might have been
zero when it was copied, but it could have been changed by now...
... and that’'s why we need to execute ‘lock cmpxchg’ at this point

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

With cmpxch

int compare and swap(int *value, int expected, int new value) ({

int temp = *value;

if (*value == expected)
*value = new_value;

return temp;

}

Busy-waiting will be brief

spin:
mov
test
jnz

test
jnz

see if the lock-variable is clear

ok, now we try to grab the lock
lock cmpxchg %edx, cmos_lock

did another CPU grab it first?

cmos_lock, %eax
%eax, %eax
spin

%eax, %eax
spin

cmos_lock: rvalue
eax: expected_Value
edx: new value

and use eax
as temp return value

If our CPU wins the ‘race’, the (non-zero) value from source-operand EDX will
have been stored into the (previously zero) ‘cmos_lock’ memory-location, but
the (previously zero) accumulator EAX will not have been modified; hence our
CPU will not jump back, but will fall through and execute the ‘critical section’ of
code (just a few instructions), then will promptly clear the ‘cmos_lock’ variable.

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

int compare and swap(int *value, int expected, int new value) ({

int temp = *value;

W'th CIm pXCh‘ if (*value == expected)

*value = new_value;

return temp;

}

The ‘less likely’ case

spin: # see if the lock-variable is clear
mov cmos_lock, %eax

bl o b cmos_lock: rvalue
ok, now we try to grab the lock eax. eXpeCted_Val ue

lock cmpxchg %edx, cmos_lock edx Nnew Val ye

did another CPU grab it first?
test %eax, %eax
jnz spin

If our CPU loses the ‘race’, because another CPU changed ‘cmos_lock’ to some

non-zero value after we had fetched our copy of it, then the (now non-zero) value
from the ‘cmos_lock’ destination-operand will have been copied into EAX, and so
the final conditional-jump shown above will take our CPU back into the spin-loop,
where it will resume busy-waiting until the ‘winner’ of the race clears ‘cmos_lock’.

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

Flow Chart

RN onbin sy flowchart

!

EAX € cmos_lock

EAX equals cmos_lock ?

ZF € 1 ZF <0

cmos_lock €< EDX A EAX € cmos_lock
o EAX > ves || crtical

IS Zer07 Section ‘

cmos lock < 0

v
finish

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

cmos lock

* This global variable is initialized to zero,
meaning that access to CMOS memory
locations is not currently ‘locked’

 |f some CPU stores a non-zero value in
this variable’s memory-location, it means
that access to CMOS memory is ‘locked’

* The kernel needs to insure that only one
CPU at a time can set this ‘lock’

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

Below C Level: An Introduction to Computer Systems

Norm Matloff
University of California, Davis

A

http://heather.cs.ucdavis.edu/~matloff/50/PLN/CompSystsBook.pdf

Atomic Variables

Typically, instructions such as compare-and-swap are used as
building blocks for other synchronization tools.

One tool is an atomic variable that provides atomic (uninterruptible)
updates on basic data types such as integers and booleans.

For example, the increment() operation on the atomic variable
seguence ensures seguence is incremented without interruption:

increment(&sequence);

Atomic Variables

The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

Int temp;

do {
temp ="v;

}

while (temp != (compare_and_swap(v,temp,temp+1));

Mutex Locks

Previous solutions are complicated and generally inaccessible to application
programmers

OS designers build software tools to solve critical section problem
Simplest is mutex lock
Protect a critical section by first acquire() a lock then release() the lock
Boolean variable indicating if lock is available or not
Calls to acquire() and release() must be atomic
Usually implemented via hardware atomic instructions such as compare-and-swap.
But this solution requires busy waiting

This lock therefore called a spinlock

Mutex Locks

while (true) {
acquire lock

critical section
release lock

remainder section

Mutex Lock Definitions

B acquire() {
while ('available)

; /* busy wait */
available = false;;

}

[| release () {

available = true;

}

These two functions must be implemented atomically.

Both test-and-set and compare-and-swap can be used to
Implement these functions.

Too Much Spinning

Two threads on a single processor

'O acquires lock -> INTERRUPT->T1 runs, spin, spin spin ... ->
NTERRUPT->TO runs -> INTERRUPT->T1 runs, spin, spin spin ...
INTERRUPT-> TO runs, release locks ->INTERRUPT->T1 runs,

enters CS

What if we have N threads”?

Just Yield

voiel ZBLEL]T |
flag = 0;

}

vond lock{() 1

while (TestAndSet (&flag, 1) == 1)
vield(); // give up the CPU
}

O 0 NN O U1 = W N =

Mold unlock
flag = 0

—
L)

)

p—
N

}

yield-> moving from running to ready

Still Not Efficient Enough

100 threads for the lock
T0 gets lock
11, T99 will call lock and then yield, still not efficient

Of course, more efficient than spinning

Semaphore

- Semaphore S is an integer variable
- e.9., to represent how many units of a particular resource is available
It can only be updated with two atomic operations: wait and signal
- spin lock can be used to guarantee atomicity of wait and signal

- originally called P and V (Dutch)

- a simple implementation with busy wait can be:
wait(s) signal(s)

{ {

while (s <= 0) ; //busy wait S++;

S—; ¥

Semaphore

Counting semaphore: allowing arbitrary resource count
Binary semaphore: integer value can be only O or 1
also known as mutex lock to provide mutual exclusion

Semaphore mutex; // 1initialized to 1
do {

wait (mutex);

critical section

signal (mutex);

remainder section
} while (TRUE);

Semaphore w/ Waiting Queue

- Associate a waiting queue with each semaphore

- place the process on the waiting queue Iif wait cannot
return iImmediately

-+ wake up a process in the waiting queue In signal
- There Is no need to busy wait

Note: wait and signal must still be atomic

Semaphore w/ Waiting Queue

wait(semaphore *S)

{
S->value--;
1t (S->value < 0) {
add this process to S->list;
block();
3
3

signal (semaphore *S)
{
S->value++;
1f (S->value <= 0) {
remove a process P from S->11ist;
wakeup(P);

N

O 00 N O U =W N -

W W W W W NN NDNDNDNDDNNDNDDNRPR = = e e e e
= WO NN P © O 0 NN O G k= W N P, O VOV NN O UG = W N —m O

typedef struct _ lock_t {
i 5 ¢ ol o - e -
int guard;
gqaeues. © %g;

3 loek E;

voic 16k . dvvE [1oek. B #H) 4
m—>flag = 0;
m->guard = 0;
queue_init (m—>q) ;

}

void-rotk(T"ock-t- »nr) -

while (TestAndSet (&m->guard, 1) == 1)
; //acquire guard lock by spinning

1f qgm—>tflag == 0)
m->flag = 1; // lock is acquired
m—->guard = 0;

} else {
queue_add (m->qg, gettid());
m—->guard = 0;
park () ;

}

vgiel vtnleekileock © &) |
while (TestAndSet (&m->guard, 1) == 1)
; //acquire guard lock by spinning
if (queue_empty (m—>q))

m->flag = 0; // let go of lock; no one wants it

else

unpark (queue_remove (m—>g)) ; 7/ hold loeck

m—->guard = 0;

-~ a _——— o~ — - - s wa .- — — : -

ce

CS to protect m->flag

CS to protect m->flag

(for next thread!)

- - s~ -

A program: lock() -> CS -> unlock

Lock
m->flag=1;
10 CS Unpack
m->guard=0
Add to queue
: ~ m->flag=0
T1 Spin m->guard = 0 CS m->guard=0
park()
Lock unLock

Note that we have a small cs (previous page) to protect the m->flag,
and a bigger CS of the program.

Deadlock and Starvation

Deadlock: two or more processes are waiting indefinitely for an event that can
be caused by only one of the waiting processes

let S and Q be two semaphores initialized to 1

PO P1
wait (S); wait (Q);
wait (Q); wait (S);
signal (S); signal (Q);
signal (Q); signal (S);

- Starvation: indefinite blocking
* a process may never be removed from the semaphore’s waiting queue

- does starvation indicate deadlock?

https://techdifferences.com/difference-between-deadlock-and-starvation-in-os.html

Priority Inversion

- Priority Inversion: a higher priority process is indirectly
preempted by a lower priority task

- e.9., three processes, PL, Pm, and Pu with priority PL < Pm < PH
- PL holds a lock that was requested by Pu = PHis blocked
- Pm becomes ready and preempted the PL
- |t effectively "inverts" the relative priorities of Pm and PH
- Solution: priority inheritance

- temporary assign the highest priority of waiting process (PHn) to
the process holding the lock (PL)

Lab1.1 is out

Lab1.2 is out
HWO IS out

