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Background

• Processes can execute concurrently 

• May be interrupted at any time, partially completing 
execution 

• Concurrent access to shared data may result in data 
inconsistency 

• data consistency requires orderly execution of 
cooperating processes



An example

HW1



Example

Why?



Uncontrolled Scheduling

• Counter = counter + 1

counter: 51 instead of 52!



Race Condition

• Several processes (or threads) access and manipulate the same data 
concurrently and the outcome of the execution depends on the 
particular order in which the access takes place, is called a race-
condition



Race Condition in Kernel

• Processes P0 and P1 are creating child processes using the fork() system 
call 

• Race condition on kernel variable next_available_pid which represents 
the next available process identifier (pid) 

• Unless there is mutual exclusion, the same pid could be assigned to two 
different processes!



Critical Section

• Consider system of n processes {p0, p1, … pn-1} 

• Each process has a critical section segment of code 

• e.g., to change common variables, update table, write file, etc. 

• Only one process can be in the critical section 

• when one process in critical section, no other may be in its critical 
section 

• each process must ask permission to enter critical section in entry 
section 

• the permission should be released in exit section 

• Remainder section



Critical Section

• General structure of process pi is 



Critical-Section Handling in OS 

• Single-core system: preventing interrupts 

• Multiple-processor: preventing interrupts are not feasible 

• Two approaches depending on if kernel is preemptive or non-
preemptive  

• Preemptive – allows preemption of process when running in 
kernel mode 

• Non-preemptive – runs until exits kernel mode, blocks, or 
voluntarily yields CPU 

• Essentially free of race conditions in kernel mode



Solution to Critical-Section: Three Requirements

• Mutual Exclusion 

• only one process can execute in the critical section 
• Progress  

• if no process is executing in its critical section and some processes wish to 
enter their critical section, then only those processes that are not executing 
in their retainer sections can participate in deciding which will enter its 
critical section next, and this selection cannot be postponed indefinitely 

• Bounded waiting  
• There exists a bound, or limit, on the number of times that other processes 

are allowed to enter their critical sections after a process has made a 
request to enter its critical section and before that request is granted 

• it prevents starvation



Progress

• The purpose of this condition is to make sure that either some 
process is currently in the CS and doing some work or, if there was 
at least one process that wants to enter the CS, it will and then do 
some work. In both cases, some work is getting done and therefore 
all processes are making progress overall. 

• 1. 

• 2. 

•



Progress

• 3. 

• 4. 

• 5.

No process running outside the critical section should block the 
other interested process from entering into it's critical section 

when in fact the critical section is free.



Bounded waiting 

• Bounded waiting: There exists a bound, or limit, on the number of 
times other processes are allowed to enter their critical sections after 
a process has made request to enter its critical section and before 
that request is granted.

No process should have to wait forever to enter into critical section. there should be boundary on getting chances 
to enter into critical section. If bounded waiting is not satisfied then there is a possibility of starvation.



Peterson’s Solution

• Peterson’s solution solves two-processes synchronization 

• It assumes that LOAD and STORE are atomic 

• atomic: execution cannot be interrupted 

• The two processes share two variables 

• int turn: whose turn it is to enter the critical section 

• Boolean flag[2]: whether a process is ready to enter the critical section



Peterson’s Solution

• P0: 

do { 
flag[0] = TRUE; 
turn = 1; 
while (flag[1] && turn == 1); 
critical section 
flag[0] = FALSE; 
remainder section 

} while (TRUE); 
•

• P1: 

do { 
flag[1] = TRUE; 
turn = 0; 
while (flag[0] && (turn == 0)); 
critical section 
flag[1] = FALSE; 
remainder section 

} while (TRUE); 



Peterson’s Solution

• 1.   Mutual exclusion is preserved 

• P0 enters CS: 

• Either flag[1] = false or turn = 0 

• Case 1: flag[1]=false-> P1 is out CS 

• Case 2: flag[1]=false, turn = 1 -> Not possible 

• Case 3: flag[1]=true, turn=1 -> contradicts with the fact P0 is in 
CS 

• Case 4: flag[1]=true, turn = 0. -> P1 is waiting



Peterson’s Solution

• Progress requirement 

• Bounded waiting

flag[0]=T turn=1

flag[1]=T turn=0 CS

CSP0

P1 flag[1]=F

Loop

Whether P0 enters CS depends on P1 
Whether P1 enters CS depends on P0 

not others 
P0 will enter CS after one limited entry P1 

Loop



Peterson’s Solution

• Although useful for demonstrating an algorithm, Peterson’s Solution 
is not guaranteed to work on modern architectures. 

• Understanding why it will not work is also useful for better 
understanding race conditions. 

• To improve performance, processors and/or compilers may reorder 
operations that have no dependencies. 

• For single-threaded this is ok as the result will always be the same. 

• For multithreaded the reordering may produce inconsistent or 
unexpected results!



Peterson’s Solution
• Two threads share the data: 

• boolean flag = false; 

• int x = 0; 

• Thread 1 performs 

• while (!flag) 

	 ; 

print x 

• Thread 2 performs 

x = 100; 

flag = true 

• What is the expected output?



Peterson’s Solution

• 100 is the expected output. 

• However, the operations for Thread 2 may be reordered: 

• If this occurs, the output may be 0! 

• The effects of instruction reordering in Peterson’s Solution



Hardware Support for Synchronization

• Many systems provide hardware support for critical section code 
• Uniprocessors: disable interrupts 

• currently running code would execute without preemption 
• generally too inefficient on multiprocessor systems 

• need to disable all the interrupts  
• operating systems using this not scalable 

• Solutions: 
• 1. Memory barriers  
• 2. Hardware instructions  

• test-and-set: either test memory word and set value 
• swap: swap contents of two memory words 

• 3. Atomic variables



Memory Barriers

• Memory model are the memory guarantees a computer 
architecture makes to application programs. 

• Memory models may be either: 

• Strongly ordered – where a memory modification of one 
processor is immediately visible to all other processors. 

• Weakly ordered  – where a memory modification of one 
processor may not be immediately visible to all other processors. 

• A memory barrier is an instruction that forces any change in 
memory to be propagated (made visible) to all other processors.



Memory Barriers

• We could add a memory barrier to the following instructions to ensure Thread 1 
outputs 100: 

• Thread 1 now performs 

while (!flag) 

	 memory_barrier(); 

print x 

• Thread 2 now performs 

x = 100; 

memory_barrier(); 

flag = true



Hardware Instructions

• Special hardware instructions that allow us to either test-and-modify 
the content of a word, or two swap the contents of two words 
atomically (uninterruptibly.) 

• Test-and-Set instruction 

• Compare-and-Swap instruction



Test-and-Set Instruction 

• Defined as below, but atomically  

bool test_set (bool *target)
{

bool rv = *target;
*target = TRUE;
return rv:

}
•



Lock with Test-and-Set

• shared variable: bool lock = FALSE 

do {
    while (test_set(&lock));   // busy wait
    critical section
    lock = FALSE;
    remainder section 
} while (TRUE);

• Mutual exclusion?  

• progress?  

• bounded-waiting? Why?



Bounded Waiting for Test-and-Set Lock
Suppose we have three threads

CS

Waiting

Waiting

Waiting

Waiting

CS

Waiting

CS

Waiting

T0

T1

T2

CS

Waiting



Bounded Waiting for Test-and-Set Lock
WaitingT1

CST0
WaitingT1
WaitingT2

CS

CS

LOCK=true, waiting[1]=false

waiting[1]=true waiting[2]=true

LOCK=true, waiting[2]=false

LOCK=false 



Compare-and-Swap Instruction



Solution using Compare-and-Swap



Review
• Data inconsistency: orderly execution 

• Race condition: outcome depends on the order 

• Critical section: change some data … 

• Program structure: entry, critical section, exit section, remainder section 

• Mutual exclusion, progress, bounded waiting 

• Peterson’s solution: ME, progress, bounded waiting 

• Does not work on modern computer, why? 

• Hardware support:  

• test_and_set 

• compare_and_Swap 

• Bounded waiting?



Compare-and-Swap in Practice: ‘cmpxchg’

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



cmpxchg

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



cmpxchg

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

cmos_lock: rvalue 
eax: expected_Value 

edx: new value 

and use eax  
as temp return value



First Version

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



With cmpxchg

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf

cmos_lock: rvalue 
eax: expected_Value 

edx: new value 

and use eax  
as temp return value



With cmpxchg

cmos_lock: rvalue 
eax: expected_Value 

edx: new value

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



Flow Chart

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



cmos_lock

source: http://heather.cs.ucdavis.edu/~matloff/50/PLN/lock.pdf



http://heather.cs.ucdavis.edu/~matloff/50/PLN/CompSystsBook.pdf



Atomic Variables

• Typically, instructions such as compare-and-swap are used as 
building blocks for other synchronization tools. 

• One tool is an atomic variable that provides atomic (uninterruptible) 
updates on basic data types such as integers and booleans. 

• For example, the increment() operation on the atomic variable 
sequence ensures sequence is incremented without interruption: 

increment(&sequence);  



Atomic Variables

• The increment() function can be implemented as follows: 

void increment(atomic_int *v) 

{ 

	 int temp; 

	 do { 

	 	 temp = *v; 

	 } 

	 while (temp != (compare_and_swap(v,temp,temp+1)); 

} 



Mutex Locks

• Previous solutions are complicated and generally inaccessible to application 
programmers 

• OS designers build software tools to solve critical section problem 

• Simplest is mutex lock 

• Protect a critical section  by first acquire() a lock then release() the lock 

• Boolean variable indicating if lock is available or not 

• Calls to acquire() and release() must be atomic 

• Usually implemented via hardware atomic instructions such as compare-and-swap. 

• But this solution requires busy waiting 

• This lock therefore called a spinlock



Mutex Locks

while (true) { 
acquire lock 

critical section 

release lock 

remainder section 
} 



Mutex Lock Definitions

• These two functions must be implemented atomically. 

• Both test-and-set and compare-and-swap can be  used to 
implement these functions.

■ acquire() {
while (!available) 

; /* busy wait */ 
available = false;; 

} 

■ release() { 
available = true; 

} 



Too Much Spinning

• Two threads on a single processor 

• T0 acquires lock -> INTERRUPT->T1 runs, spin, spin spin … -> 
INTERRUPT->T0 runs -> INTERRUPT->T1 runs, spin, spin spin …
INTERRUPT-> T0 runs, release locks ->INTERRUPT->T1 runs, 
enters CS 

• What if we have N threads?



Just Yield

yield-> moving from running to ready



Still Not Efficient Enough

• 100 threads for the lock 

• T0 gets lock 

• T1, T99 will call lock and then yield, still not efficient  

• Of course, more efficient than spinning



Semaphore

• Semaphore S is an integer variable


• e.g., to represent how many units of a particular resource is available 

• It can only be updated with two atomic operations: wait and signal


• spin lock can be used to guarantee atomicity of wait and signal 

• originally called P and V (Dutch) 
• a simple implementation with busy wait can be:  

wait(s)          signal(s) 

{           { 

  while (s <= 0) ; //busy wait    s++; 

  s--;         }



Semaphore

• Counting semaphore: allowing arbitrary resource count 
• Binary semaphore: integer value can be only 0 or 1 

• also known as mutex lock to provide mutual exclusion 

Semaphore mutex;    //  initialized to 1
do {

wait (mutex);
critical section
signal (mutex);
remainder section

} while (TRUE);
•



Semaphore w/ Waiting Queue

• Associate a waiting queue with each semaphore  

• place the process on the waiting queue if wait cannot 
return immediately 

• wake up a process in the waiting queue in signal 

• There is no need to busy wait 

• Note: wait and signal must still be atomic



Semaphore w/ Waiting Queue
wait(semaphore *S)
{
    S->value--; 

  if (S->value < 0) { 
        add this process to S->list; 
        block(); 
    } 
}

signal(semaphore *S) 
{ 
    S->value++; 
    if (S->value <= 0) { 
        remove a process P from S->list; 
        wakeup(P); 
     }
}



Semaphore w/ Waiting Queue in practice

CS to protect m->flag

CS to protect m->flag



• A program: lock() -> CS -> unlock 

• Note that we have a small cs (previous page) to protect the m->flag, 
and a bigger CS of the program.

CST0

m->flag=1;  
m->guard=0

T1 Spin
Add to queue 
m->guard = 0 

park()

Unpack
m->guard=0

m->flag=0 
m->guard=0CS

Lock unLock

unLock 

Lock 



Deadlock and Starvation

• Deadlock: two or more processes are waiting indefinitely for an event that can 
be caused by only one of the waiting processes 
	 let S and Q be two semaphores initialized to 1 

   P0                    P1 

  wait (S);                 wait (Q); 

  wait (Q);                 wait (S); 

  …                … 

  signal (S);                 signal (Q); 

  signal (Q);                 signal (S); 

• Starvation: indefinite blocking   

• a process may never be removed from the semaphore’s waiting queue 

• does starvation indicate deadlock?

https://techdifferences.com/difference-between-deadlock-and-starvation-in-os.html



Priority Inversion

• Priority Inversion: a higher priority process is indirectly 
preempted by a lower priority task  

• e.g., three processes, PL, PM, and PH with priority PL < PM < PH 

• PL holds a lock that was requested by PH ➱ PH is blocked 

• PM becomes ready and preempted the PL 

• It effectively "inverts" the relative priorities of PM and PH 

• Solution: priority inheritance 

• temporary assign the highest priority of waiting process (PH) to 
the process holding the lock (PL)



Lab1.1 is out
Lab1.2 is out
HW6 is out


